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Spin-3/2 Fields in Flat Space-Time 
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The equations for the spin-3/2 (Rarita-Schwinger) field given by linearized 
simple supergravity are written in space-plus-time form in terms of SU(2) spinors, 
assuming that the background space-time is fiat. Some consequences of these 
equations are analyzed and a Hamiltonian structure for the Rarita-Schwinger 
field is obtained. 

1. I N T R O D U C T I O N  

Supergravity theory gives a consistent system of equations for a spin- 
3/2 (Rarita-Schwinger) massless field coupled to a gravitational field. The 
spin-3/2 field is represented by anticommuting variables and generates the 
torsion of  the connection. The supergravity field equations are invariant 
under supersymmetry transformations, which mix the spin-3/2 field with the 
variables representing the gravitational field (see, e.g., van Nieuwenhuizen, 
1981). 

When the simple supergravity field equations are linearized with respect 
to the spin-3/2 fields about a solution with vanishing spin-3/2 fields, one 
obtains a consistent equation for the Rarita-Schwinger field on a solution 
of the Einstein vacuum field equations. In this approximation, the supersym- 
metry transformations affect only the spin-3/2 field and the torsion of  the 
connection vanishes (see, e.g., Aichelburg and Urbantke, 1981; Gtiven, 1980; 
Tortes del Castillo, 1989a). 

In this paper we consider the equations for the Rarita-Schwinger field 
on flat space-time, given by the linearized supergravity field equations, on 
a semiclassical level (in particular, we shall assume that the spinor components 
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of the Rarita-Schwinger field are ordinary complex-valued functions). The 
equations for the spin-3/2 field are written in space-plus-time form and by 
expanding a gauge-invariant field made out of the Rarita-Schwinger field 
in plane waves, we obtain a Hamiltonian structure that does not require the 
theory of constrained Hamiltonian systems [in fact, as shown in Torres del 
Castiilo and Acosta-Avalos (1994), by this procedure one can find an infinite 
number of different Hamiltonian structures]. In Senjanovi6 (1977) and Pilati 
(1978) a Hamiltonian formulation for the Rarita-Schwinger field is given 
following the standard procedure starting from a (Lorentz-invariant) Lagran- 
gian density for the spin-3/2 field, which leads to the appearance of constraints 
and therefore to the necessity of using Dirac brackets instead of Poisson 
brackets in order to take into account the existence of constraints. In the 
approach followed here, which is simpler and more elementary, the Hamilto- 
nian structure and the Hamiltonian functional are deduced from the field 
equations themselves, avoiding the use of Lagrangians (and the presence of 
the concomitant constraints) and without having to choose a specific gauge. 
The Hamiltonian structure so obtained is then employed to analyze some 
conserved currents arising from the equations for the spin-3/2 field. In Section 
2 we start from the equations for the spin-3/2 field written in terms of two- 
component spinors in four dimensions and we express them in space-plus- 
time form, in terms of spinors in three dimensions (cf. also Sommers, 1980; 
Sen, 1981). In Section 3, we obtain a Hamiltonian structure for the Rarita- 
Schwinger field corresponding to an indefinite Hamiltonian functional. In 
most of this paper we employ three-dimensional spinors following the notation 
and conventions of Tortes del Castillo (1992, 1994a,b). 

2. THE RARITA-SCHWINGER EQUATION IN 3-PLUS-1 F O R M  

If the field equations of simple supergravity are linearized with respect 
to the spin-3/2 fields about a solution with vanishing spin-3/2 fields, apart 
from the Einstein vacuum field equations with a torsion-free connection, 
the following equations for a spin-3/2 field are obtained (Aichelburg and 
Urbantke, 1981): 

V ABIJjAcI~ = V CDI~'AAB (1) 

Equations (1) are free from algebraic constraints and are invariant under the 
supersymmetry transformations 

~JABC ''@ I~JABC "~- V BCOfA (2) 

where cxa is an arbitrary spinor field, provided that the Ricci tensor vanishes. 
In what follows, we shall assume that the background space-time is fiat. 
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In order to decompose the field equations (1) in space-plus-time form, 
we shall introduce a future-pointing unit vector normal to the constant-time 
hypersurfaces, nas; thus, 

nMInAB = 2 (3) 

The null tetrad vectors O.s (which satisfy the condition ana" aco = --2eACeSO) 
can be expressed as 

119 
19AB = -- V/~ nBB19AB -- n A S -  - -  (4) 

c Ot 

where Oas = dsa form a spatial triad [such that 19AS'OCO = --�89 + 
eSCeAO)]. In a similar manner, we can write 

O~aBC = -- , f2  nC cd~scA -- nsc~J~ (5) 

where OaBC = I~J(AB)C and the parentheses denote symmetrization on the indices 
enclosed. Substituting equations (4)-(5) into equation (1), one obtains 

X I ~ ( V A B ~ c D A -  VCDI~ABA ) -- 1 19 c - ~  d~cos + Vcot~B = 0 (6a) 

V A S ~  -- I 19 
C f~5 ~JABA = 0 (6b) 

Similarly, using equations (2) and (4)-(5), one finds that the supersymmetry 
transformations are given by 

1 0  
I]JA ~ I~JA q" C ~ O/'A (7) ~asc --~ OASC + VABOtC, 

Equation (6a) is equivalent to 

and 

__ II~VA(cIIJD)AB 1 O 
- c ~ ~'co8 + Vco~B = 0 (8) 

Va(c~o) aD = 0 (9) 

It may be noticed that equation (9) can also be written as 

V ADd~C aD = V cAd~AD D (10) 

AS a consequence of equations (6b) and (9), the spinor field 

1 0  
+.Be-  ,~V~ c at ~'A~ + V~*~ (11) 
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is totally symmetric [cf. equation (8)]. Using the fact that, in flat space, 
VDAVBD = I~ ~'ICD~7 ~=An* *CO, one finds that d~AOC is invariant under the gauge 
transformations (7). From equations (8) and (11) we have 

+aac = 2x /~TO(a~O)D C _ 2 0 C at ~ABC + 2VAB@C (12) 

hence 

Vas~asc = 0,  1 0 at +,~c = - 4 2  VO~A+,~O (13) 

which are the usual massless free field equations (see, e.g., Tortes del 
Castillo, 1994b). 

As shown in Torres del Castillo (1989b), equations (1) [or, equivalently, 
equations (6)] imply the existence of a conserved current. In fact, by an explicit 
computation, using equations (6) and (10) and their complex conjugates, one 
obtains the continuity equation 

O.__.pp= VABjAB (14) 
Ot 

with 

p = ~,~c~CA + ~ q , A c  ~ 

JAB ~ --C { x//2 (I~I(A I CDI+cD B) "F ~J(A t CD II~JCDB) -- I]jCD(A~.JCDB) ) 

+ I~jC(AB)~IC -~- ~jC(AB)~I C -- I]j(AcIC'~]I B) -- ~j(AcICI~jB)} (15) 

where, for any spinor field I~JAB.. .L, 

4'A8. = ~ . s L  (16) 

(see Torres del Castillo, 1994a) and the indices between bars are excluded 
from the symmetrization. The continuity equation (14) implies, in the usual 
way, that 

Q =-- I f~d3x = f (~ABCt~BCA q- ~Aaet~AcC) d3x (17) 

is a constant. Even though p is not invariant under the gauge transformations 
(7), the integral (17) is gauge invariant. In fact, a straightforward computation 
making use of equation (I0) shows that, under the transformation (7), p 
transforms as 
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/ 
+ VaB[ CA C + c +  ,AcC B + P --..> P 

' ) + ~ (rLaVBcCt c -- otaVBcrt c + ~tCVca~tB - ctCVcA&B) (18) 

i.e., the transformed p differs from the original by a divergence and therefore 
Q is invariant under the transformations (7). 

From equations (15) and (16) it follows that JaB = _ jAn ,  which means 
that JaB corresponds to a real vector field (Torres del Castillo, 1994a,b) and 
that p is real; however, p is not necessarily positive. In fact, using the 
decomposition I]JaB C : I~(ABC) Jr 2 D ~eC(A~B) n , one finds that 

P = ~(ABC)~(aBC) _ 4 ~jaBBd/~cC (19) 
3 

which is the difference of two positive quantities [see equation (16)]. Never- 
theless, the integral Q [equation (17)] is nonnegative [see equation (36) 
below]. 

We close this section by pointing out that from the second equation in 
(13) it follows that 

! L ~AB(~)ABC -- x/12 ~DcVaBI~)aB D (20) 
c Ot 3 

thus, if VABdpaSC vanishes at a particular time, then VAB~aBc will vanish at 
any subsequent time. Therefore, the first equation in (13) can be considered 
as an initial condition for the second equation in (13). [Analogously, the 
source-free Maxwell equations can be divided into evolution equations and 
initial conditions (see, e.g., Torres del Castillo and Acosta-Avalos, 1994.] 

3. HAMILTONIAN STRUCTURE 

Following Tortes del Castillo and Acosta-Avalos (1994), in this section 
we shall give a Hamiltonian description for the gauge-independent equations 
(13). Assuming that the field ~baBc satisfies periodic boundary conditions at 
the walls of a rectangular box of volume ~ the components #PABC with respect 
to the basis induced by the Cartesian coordinates (Tortes del Castillo, 1992) 
can be expressed as 

~aBc(X, t) : l-I - In  ~ (ak(t)hahBh C q- bk(t)hahBhc)e ik'x (21) 
k 

where h a is such that the spinor equivalent of k is given by 

kaB = v/21kl h(a~-8) (22) 
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[in other words, k/I k I is the flagpole (or handle) of the flag (or ax) represent- 
ing the spinor ha; see, e.g., Payne (1952) and Torres del Castillo (1990)]. 
Then, from equation (22) it follows that ha is normalized in the sense that 

hA~kA = 1 (23) 

and 

Ikl Ikl ^ 
kash a = ~ ha, kaB~ B = v/~ ha (24) 

The spinor ha can be taken in such a way that 

{e -i'~/2 cos(0/2)~, [--e -i~/2 sin(0/2)~ 
(ha) = ~ e i'p/2 sin(0/2) ] (~A) = ~ e i~/2 cOS(0/2) ] 

where 0, tp are the polar and azimuth angles of k, respectively. 
Using the fact that, acting on e '~''x, the effect of OAB is equivalent to 

multiplying by ikao, one finds that the expression (21) satisfies the first of 
equations (13) identically [in fact, this equation excludes the presence of 
terms proportional to h(ahB~kC) and k(ahshc~ in equation (21)] and from the 
second of equations (13), making use of equations (24), one obtains 

ak = itoak, bk = --iO~bk (25) 

where a dot denotes partial differentiation with respect to the time and 
to --- Iklc. 

For each allowed vector k we introduce four real variables qk, Pk, qk, 
and Pk satisfying the equations of motion 

qk = Pk, .'Ok = --O')2qk, qk = --/~k, ..O k = to2qk (26) 

which follow from Hamilton's equations with the Hamiltonian 

H = ~ ~] [p~, + to qr, - / ~ ,  - to2q2] (27) 
k 

assuming that qk, Pk and '~k, /~k are canonically conjugate variables. If we let 

ak = (2hto)-J/z(pk + ioJqk), bk = (2hto)-I/Z(Pk + itoqk) (28) 

then equations (25) are equivalent to equations (26); the only nonvanishing 
Poisson brackets among the expansion coefficients and their complex conju- 
gates are given by 

{~, ak'} = {~, bk,} = (ih)-t~kk ' (29) 

and the Hamiltonian (27) is 



Spin-3/2 Fields in Flat Space-Time 575 

H = ~ hto(ak'~R - bk-~k) (30) 
k 

On the other hand, from equations (21) and (23) one finds that the 
expansion coefficients ak and bk are given by 

= ~"~-1/2 ( ~kA~ka~kc~aaCe-ik.x d3x Ok 
J 

bk = ~'~-1/2 j kA~.BhCf])aace-ik.x d3x (31) 

Therefore, substituting equations (31) into equation (30), we find that the 
Hamiltonian is 

H = - I  ~ABCv]2ihCVRAC~BCR d3x (32) 

Equations (21) and (29) lead to the following Poisson brackets (at equal times) 

{+Asc(X, t), +OeF(X', t)} = 0 

{~baac(x, t), ^ ' 1 1,)_ j 
k 

-- hahnhcho~.~hF)e ik'(x-x') (33) 

The last equation can also be written in the form 

{d~asc(X, t), ~boer(X', t)} 

_ 1 ~ - t  ( 
ih 2 -  ~ I kl-2\kaDkOE~-CF + kADkcF~aE 

k 

1 21EADIEBEIECF) (34) + knekcF%o + ~ l k l  e '~'(x-x') 

which shows that the left-hand side of equation (34) is symmetric in x and x'. 
The spinor potentials d~sco and % corresponding to the field (21) can 

be chosen as 

% = 0  

i ~'~- 1/2 t~Aac = ~ ~ I k I -](akhahah c -- bk~a~.a~.c)e ~'x (35) 
k 
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which satisfy equations (6) and (12). Substituting equation (35) into the 
definition (17), one obtains the expression 

1 
Q = ~ ~ I kl -2(aki~/-~ + bkb--kk) 

k 
(36) 

which amounts to 

G - I dpABC~)ABC d3x (37)  

Therefore 

G = ~ (aki~k + bkb--kk) (38) 
k 

[see equation (21)] and is clearly time independent [equations (25)]. From 
equations (29) and (38) it follows that 

1 1 
{au, G} = -~-~ ak, {bk, G} = --:-;; bk (39) 

i n  

1 
{d~ABc(X, t), G} = -~-~ (I)ABc(X, t) (40) 

which means that G is the generator of the "duality rotations" 

~ABC "-) eis/h~aBC (41) 

that leave invariant the Hamiltonian (32) and the Poisson brackets (33) (Torres 
del Castillo and Acosta-Avalos, 1994). 

The integral 

C =--- i [ ~)ABCI~IAB C d3x (42) 

is gauge invariant since, under the transformation (7), 

~)ABCI~.IABC ----) ~)ABC(I~JAB c dr- V ABOI.c) : ~)ABC~JAB C -~- V AB( ~jABCOtc) 

[equations (13)]. Therefore, we can evaluate the integral (42) making use of 
the specific choice (35), which gives 

which, by virtue of equations (25), is indeed time independent. 
There exist many other real, gauge-invariant, conserved quantities that 

follow from equations (6) and (13). One of them is given by (Torres del 
Castillo, 1994b) 
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l 
C = ~ ~ Ikl-t(ak~k -- bkb--k) (43) 

k 

thus showing that C is real [even though the integrand in equation (42) is 
complex] and a constant of motion. 

4. CONCLUDING R E M A R K S  

As pointed out in Torres del Castillo (1989a), equations (l) are analogous 
to those of a self-dual electromagnetic field. In fact, the spinor potentials 
t~ABC and ~A are the analogs of the electromagnetic potentials A and q0, 
respectively [compare, e.g., equations (7) with the gauge transformations of 
the electromagnetic field], while ~bAsc is the analog of the gauge-invariant 
field E - iB [see equation (1 l)]. Apart from the Hamiltonian structure given 
in Section 3, one can find an infinite number of alternative Hamiltonian 
structures by proposing linear relationships between ak, bk and the canonical 
variables qk, Pk, qk, Pk different from those given by equations (28) (see 
Tortes del Castillo and Acosta-Avalos, 1994). 

The use of the two-component spinor formalism is highly convenient, 
since it avoids the redundancies arising in the treatment of the Rarita- 
Schwinger field in terms of Dirac spinors. Another advantage of the two- 
component spinor formalism is that it allows one to deal with fields of any 
spin in a unified way; in fact, many of the expressions given in Section 3 
are applicable to fields of any spin with minor changes. 
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